

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dirq 1.3 documentation

Welcome to dirq’s documentation!

Contents:

	QueueSimple documentation
	QueueSimple class

	queue documentation
	Provides

	Documentation

	QueueNull documentation
	QueueNull class

	QueueBase documentation
	Author

	License and Copyright

	Exceptions documentation
	Author

	License and Copyright

Directory based queue.

A port of Perl module Directory::Queue
http://search.cpan.org/dist/Directory-Queue/

The documentation from Directory::Queue module was adapted for Python.

The goal of this module is to offer a queue system using the underlying
filesystem for storage, security and to prevent race conditions via atomic
operations. It focuses on simplicity, robustness and scalability.

This module allows multiple concurrent readers and writers to interact with
the same queue.

For usage and implementation details see dirq.queue module.

Author

Konstantin Skaburskas <konstantin.skaburskas@gmail.com>

License and Copyright

ASL 2.0

Copyright (C) CERN 2011-2013

Indices and tables

	Index

	Module Index

	Search Page

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dirq 1.3 documentation

QueueSimple documentation

QueueSimple - object oriented interface to a simple directory based queue.

A port of Perl module Directory::Queue::Simple
http://search.cpan.org/dist/Directory-Queue/
The documentation from Directory::Queue::Simple module was
adapted for Python.

QueueSimple class

QueueSimple - simple directory based queue.

Usage:

from dirq.QueueSimple import QueueSimple

sample producer

dirq = QueueSimple('/tmp/test')
for count in range(1,101):
 name = dirq.add("element %i\n" % count)
 print("# added element %i as %s" % (count, name))

sample consumer

dirq = QueueSimple('/tmp/test')
for name in dirq:
 if not dirq.lock(name):
 continue
 print("# reading element %s" % name)
 data = dirq.get(name)
 # one could use dirq.unlock(name) to only browse the queue...
 dirq.remove(name)

Description

This module is very similar to dirq.queue, but uses a
different way to store data in the filesystem, using less
directories. Its API is almost identical.

Compared to dirq.queue, this module:

	is simpler

	is faster

	uses less space on disk

	can be given existing files to store

	does not support schemas

	can only store and retrieve byte strings

	is not compatible (at filesystem level) with Queue

Please refer to dirq.queue for general information about
directory queues.

Directory Structure

The toplevel directory contains intermediate directories that contain
the stored elements, each of them in a file.

The names of the intermediate directories are time based: the element
insertion time is used to create a 8-digits long hexadecimal number.
The granularity (see the constructor) is used to limit the number of
new directories. For instance, with a granularity of 60 (the default),
new directories will be created at most once per minute.

Since there is usually a filesystem limit in the number of directories
a directory can hold, there is a trade-off to be made. If you want to
support many added elements per second, you should use a low
granularity to keep small directories. However, in this case, you will
create many directories and this will limit the total number of
elements you can store.

The elements themselves are stored in files (one per element) with a
14-digits long hexadecimal name SSSSSSSSMMMMMR where:

	SSSSSSSS represents the number of seconds since the Epoch

	MMMMM represents the microsecond part of the time since the Epoch

	R is a random digit used to reduce name collisions

A temporary element (being added to the queue) will have a .tmp
suffix.

A locked element will have a hard link with the same name and the
.lck suffix.

Author

Konstantin Skaburskas <konstantin.skaburskas@gmail.com>

License and Copyright

ASL 2.0

Copyright (C) CERN 2011-2013

	
class dirq.QueueSimple.QueueSimple(path, umask=None, granularity=60)

	QueueSimple

	
add(data)

	Add data to the queue as a file.

Return: element name (<directory name>/<file name>).

	
add_path(path)

	Add the given file (identified by its path) to the queue and return
the corresponding element name, the file must be on the same
filesystem and will be moved to the queue

	
add_ref(data)

	Defined to comply with Directory::Queue interface.

	
count()

	Return the number of elements in the queue, locked or not
(but not temporary).

	
get(name)

	Get locked element.

	
get_path(name)

	Return the path given the name.

	
get_ref(name)

	Get locked element. Defined to comply with Directory::Queue interface.

	
lock(name, permissive=True)

	Lock an element.

	Arguments:

	name - name of an element
permissive - work in permissive mode

Return:

	true on success

	false in case the element could not be locked (in permissive
mode)

	
purge(maxtemp=300, maxlock=600)

	Purge the queue by removing unused intermediate directories,
removing too old temporary elements and unlocking too old locked
elements (aka staled locks); note: this can take a long time on
queues with many elements.

	maxtemp - maximum time for a temporary element

	(in seconds, default 300);
if set to 0, temporary elements will not be removed

	maxlock - maximum time for a locked element

	(in seconds, default 600);
if set to 0, locked elements will not be unlocked

	
remove(name)

	Remove a locked element from the queue.

	
unlock(name, permissive=False)

	Unlock an element.

	Arguments:

	name - name of an element
permissive - work in permissive mode

Return:

	true on success

	false in case the element could not be unlocked (in permissive
mode)

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dirq 1.3 documentation

queue documentation

Directory based queue.

A port of Perl module Directory::Queue
http://search.cpan.org/dist/Directory-Queue/
The documentation from Directory::Queue module was adapted for Python.

The goal of this module is to offer a simple queue system using the
underlying filesystem for storage, security and to prevent race
conditions via atomic operations. It focuses on simplicity, robustness
and scalability.

This module allows multiple concurrent readers and writers to interact
with the same queue.

Provides

Classes:

	dirq.queue.Queue directory based queue

	dirq.QueueSimple.QueueSimple simple directory based queue

	dirq.queue.QueueSet set of directory based queues

	dirq.Exceptions.QueueError exception

Documentation

Queue class

dirq.queue.Queue - directory based queue.

Usage:

from dirq.queue import Queue

simple schema:
- there must be a "body" which is a string
- there can be a "header" which is a table/dictionary

schema = {"body": "string", "header": "table?"}
queuedir = "/tmp/test"

sample producer

dirq = Queue(queuedir, schema=schema)
import os
for count in range(1,101):
 name = dirq.add({"body" : "element %i"%count,
 "header": dict(os.environ)})
 print("# added element %i as %s" % (count, name))

sample consumer

dirq = Queue(queuedir, schema=schema)
name = dirq.first()
while name:
 if not dirq.lock(name):
 name = dirq.next()
 continue
 print("# reading element %s" % name)
 data = dirq.get(name)
 # one can use data['body'] and data['header'] here...
 # one could use dirq.unlock(name) to only browse the queue...
 dirq.remove(name)
 name = dirq.next()

Terminology

An element is something that contains one or more pieces of data. A
simple string may be an element but more complex schemas can also be
used, see the Schema section for more information.

A queue is a “best effort FIFO” collection of elements.

It is very hard to guarantee pure FIFO behavior with multiple writers
using the same queue. Consider for instance:

. Writer1: calls the add() method
. Writer2: calls the add() method
. Writer2: the add() method returns
. Writer1: the add() method returns

Who should be first in the queue, Writer1 or Writer2?

For simplicity, this implementation provides only “best effort FIFO”,
i.e. there is a very high probability that elements are processed in
FIFO order but this is not guaranteed. This is achieved by using a
high-resolution time function and having elements sorted by the time
the element’s final directory gets created.

Locking

Adding an element is not a problem because the add() method is atomic.

In order to support multiple processes interacting with the same queue,
advisory locking is used. Processes should first lock an element before
working with it. In fact, the get() and remove() methods raise an
exception if they are called on unlocked elements.

If the process that created the lock dies without unlocking the ele-
ment, we end up with a staled lock. The purge() method can be used to
remove these staled locks.

An element can basically be in only one of two states: locked or
unlocked.

A newly created element is unlocked as a writer usually does not need
to do anything more with the element once dropped in the queue.

Iterators return all the elements, regardless of their states.

There is no method to get an element state as this information is usu-
ally useless since it may change at any time. Instead, programs should
directly try to lock elements to make sure they are indeed locked.

Constructor

For the signature of the Queue constructor see documentation to the
respective __init__() method.

Schema

The schema defines how user supplied data is stored in the queue. It is
only required by the add() and get() methods.

The schema must be a dictionary containing key/value pairs.

The key must contain only alphanumerical characters. It identifies the
piece of data and will be used as file name when storing the data
inside the element directory.

The value represents the type of the given piece of data. It can be:

	binary

	the data is a sequence of binary bytes, it will be stored directly
in a plain file with no further encoding

	string

	the data is a text string (i.e. a sequence of characters), it will
be UTF-8 encoded

	table

	the data is a reference to a hash of text strings, it will be seri-
alized and UTF-8 encoded before being stored in a file

By default, all pieces of data are mandatory. If you append a question
mark to the type, this piece of data will be marked as optional. See
the comments in the Usage section for more information.

To comply with Directory::Queue implementation it is allowed to
append ‘*’ (asterisk) to data type specification, which in
Directory::Queue means switching to working with element references in
add() and get() operations. This is irrelevant for the Python
implementation.

Directory Structure

All the directories holding the elements and all the files holding the
data pieces are located under the queue toplevel directory. This direc-
tory can contain:

	temporary

	the directory holding temporary elements, i.e. the elements being
added

	obsolete

	the directory holding obsolete elements, i.e. the elements being
removed

	NNNNNNNN

	an intermediate directory holding elements; NNNNNNNN is an 8-digits
long hexadecimal number

In any of the above directories, an element is stored as a single
directory with a 14-digits long hexadecimal name SSSSSSSSMMMMMR where:

	SSSSSSSS

	represents the number of seconds since the Epoch

	MMMMM

	represents the microsecond part of the time since the Epoch

R is a random digit used to reduce name collisions

Finally, inside an element directory, the different pieces of data are
stored into different files, named according to the schema. A locked
element contains in addition a directory named “locked”.

Security

There are no specific security mechanisms in this module.

The elements are stored as plain files and directories. The filesystem
security features (owner, group, permissions, ACLs...) should be used
to adequately protect the data.

By default, the process’ umask is respected. See the class constructor
documentation if you want an other behavior.

If multiple readers and writers with different uids are expected, the
easiest solution is to have all the files and directories inside the
toplevel directory world-writable (i.e. umask=0). Then, the permissions
of the toplevel directory itself (e.g. group-writable) are enough to
control who can access the queue.

QueueSet class

dirq.queue.QueueSet - interface to a set of Queue objects

Usage:

from dirq.queue import Queue, QueueSet

dq1 = Queue("/tmp/q1")
dq2 = Queue("/tmp/q2")
dqset = QueueSet(dq1, dq2)
dqs = [dq1, dq2]
dqset = QueueSet(dqs)

(dq, elt) = dqset.first()
while dq:
 # you can now process the element elt of queue dq...
 (dq, elt) = dqset.next()

Description

This class can be used to put different queues into a set and browse
them as one queue. The elements from all queues are merged together
and sorted independently from the queue they belong to.

Constructor

For the signature of the QueueSet constructor see documentation to the
respective dirq.queue.QueueSet.__init__() method.

Author

Konstantin Skaburskas <konstantin.skaburskas@gmail.com>

License and Copyright

ASL 2.0

Copyright (C) CERN 2011-2013

	
class dirq.queue.Queue(path, umask=None, maxelts=16000, schema={})

	Directory based queue.

	
add(data)

	Add a new element to the queue and return its name.
Arguments:

data - element as a dictionary (should conform to the schema)

Raise:

QueueError - problem with schema definition or data
OSError - problem putting element on disk

Note:

the destination directory must _not_ be created beforehand as
it would be seen as a valid (but empty) element directory by
another process, we therefore use rename() from a temporary
directory

	
count()

	Return the number of elements in the queue, regardless of
their state.

	Raise:

	OSError - can’t list/stat element directories

	
dequeue(ename, permissive=True)

	Dequeue an element from the queue. Removes element from the
queue. Performs operations: lock(name), get(name), remove(name)

	Arguments:

	ename - name of an element

	Return:

	dictionary representing an element

	Raise:

	QueueLockError - coulnd’t lock element
QueueError - problems with schema/data types/etc.
OSError - problems opening/closing directory/file

	
enqueue(data)

	Add a new element to the queue and return its name.
Arguments:

data - element as a dictionary (should conform to the schema)

Raise:

QueueError - problem with schema definition or data
OSError - problem putting element on disk

Note:

the destination directory must _not_ be created beforehand as
it would be seen as a valid (but empty) element directory by
another process, we therefore use rename() from a temporary
directory

	
get(ename)

	Get an element data from a locked element.

	Arguments:

	ename - name of an element

	Return:

	dictionary representing an element

	Raise:

	
	QueueError - schema is unknown; unexpected data type in

	the schema specification; missing mandatory
file of the element

OSError - problems opening/closing file
IOError - file read error

	
get_element(ename, permissive=True)

	Get an element from the queue. Element will not be removed.
Operations performed: lock(name), get(name), unlock(name)

	Arguments:

	ename - name of an element

	Raise:

	QueueLockError - couldn’t lock element

	
lock(ename, permissive=True)

	Lock an element.

	Arguments:

	ename - name of an element
permissive - work in permissive mode

Return:

	True on success

	False in case the element could not be locked (in permissive
mode)

	Raise:

	QueueError - invalid element name
OSError - can’t create lock (mkdir()/lstat() failed)

Note:

	locking can fail:
	if the element has been locked by somebody else (EEXIST)

	if the element has been removed by somebody else (ENOENT)

	if the optional second argument is true, it is not an error if
the element cannot be locked (permissive mode), this is the
default

	the directory’s mtime will change automatically (after a
successful mkdir()), this will later be used to detect stalled
locks

	
purge(maxtemp=300, maxlock=600)

	Purge the queue:

	delete unused intermediate directories

	delete too old temporary directories

	unlock too old locked directories

	Arguments:

	
	maxtemp - maximum time for a temporary element. If 0, temporary

	elements will not be removed.

	maxlock - maximum time for a locked element. If 0, locked

	elements will not be unlocked.

	Raise:

	OSError - problem deleting element from disk

	Note:

	this uses first()/next() to iterate so this will reset the cursor

	
remove(ename)

	Remove locked element from the queue.

	Arguments:

	ename - name of an element

	Raise:

	
	QueueError - invalid element name; element not locked;

	unexpected file in the element directory

OSError - can’t rename/remove a file/directory

	Note:

	doesn’t return anything explicitly (i.e. returns NoneType)
or fails

	
unlock(ename, permissive=False)

	Unlock an element.

	Arguments:

	ename - name of an element
permissive - work in permissive mode

Return:

	true on success

	false in case the element could not be unlocked (in permissive
mode)

	Raise:

	QueueError - invalid element name
OSError - can’t remove lock (rmdir() failed)

Note:

	unlocking can fail:

	if the element has been unlocked by somebody else (ENOENT)

	if the element has been removed by somebody else (ENOENT)

	if the optional second argument is true, it is not an error if
the element cannot be unlocked (permissive mode), this is _not_
the default

	
class dirq.queue.QueueSet(*queues)

	Interface to elements on a set of directory based queues.

	
add(*queues)

	Add lists of queues to existing ones. Copies of the object
instances are used.

	Arguments:

	*queues - add([q1,..]/(q1,..)) or add(q1,..)

	Raise:

	QueueError - queue already in the set
TypeError - wrong queue object type provided

	
count()

	Return the number of elements in the queue set, regardless of
their state.

	Raise:

	OSError - can’t list/stat element directories

	
first()

	Return the first element in the queue set and cache information
about the next ones.

	Raise:

	OSError - can’t list directories

	
names()

	Return iterator over element names on the set of queues.

	
next()

	Return (queue, next element) tuple from the queue set, only using
cached information.

	Raise:

	
	StopIteration - when used as Python iterator via

	__iter__() method

OSError - can’t list element directories

	
remove(given_queue)

	Remove a queue and its respective elements from in memory cache.

	Arguments:

	queue - queue to be removed

	Raise:

	TypeError - wrong queue object type provided

	
exception dirq.queue.QueueError

	QueueError

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dirq 1.3 documentation

QueueNull documentation

QueueNull - object oriented interface to a null directory based queue.

A port of Perl module Directory::Queue::Null
http://search.cpan.org/dist/Directory-Queue/
The documentation from Directory::Queue::Null module was
adapted for Python.

QueueNull class

QueueNull - null directory based queue.

Usage:

from dirq.QueueNull import QueueNull

sample producer

dirq = QueueNull()
for count in range(1,101):
 name = dirq.add("element %i\n" % count)

Description

The goal of this module is to offer a “null” queue system using the
same API as the other directory queue implementations. The queue will
behave like a black hole: added data will disappear immediately so the
queue will therefore always appear empty.

This can be used for testing purposes or to discard data like one
would do on Unix by redirecting output to /dev/null.

Please refer to dirq.queue for general information about
directory queues.

Author

Konstantin Skaburskas <konstantin.skaburskas@gmail.com>

License and Copyright

ASL 2.0

Copyright (C) CERN 2011-2013

	
class dirq.QueueNull.QueueNull

	QueueNull

	
add(data)

	Add data to the queue, this does nothing.

	
add_path(path)

	Add the given file (identified by its path) to the queue,
this will therefore remove the file.

	
add_ref(data)

	Defined to comply with Directory::Queue interface.

	
count()

	Return the number of elements in the queue, which means
it always return 0.

	
get(name)

	Not supported method.

	
get_path(name)

	Not supported method.

	
get_ref(name)

	Get locked element. Defined to comply with Directory::Queue interface.

	
lock(name, permissive=True)

	Not supported method.

	
purge(maxtemp=300, maxlock=600)

	Purge the queue, this does nothing.

	
remove(name)

	Not supported method.

	
unlock(name, permissive=False)

	Not supported method.

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dirq 1.3 documentation

QueueBase documentation

Base class and common code for dirq package.

It is used internally by dirq modules and should not
be used elsewhere.

Author

Konstantin Skaburskas <konstantin.skaburskas@gmail.com>

License and Copyright

ASL 2.0

Copyright (C) CERN 2011-2013

	
class dirq.QueueBase.QueueBase(path, umask=None)

	QueueBase

	
copy()

	Copy/clone the object. Return copy of the object.

Note:

	the main purpose is to copy/clone the iterator cached state

	the other structured attributes (including schema) are not cloned

	
first()

	Return the first element in the queue and cache information about
the next ones.

	Raise:

	OSError - can’t list directories

	
names()

	Return iterator over element names.

	
next()

	Return name of the next element in the queue, only using cached
information. When queue is empty, depending on the iterator
protocol - return empty string or raise StopIteration.

	Return:

	name of the next element in the queue

	Raise:

	
	StopIteration - when used as Python iterator via

	__iter__() method

	
touch(ename)

	Touch an element directory to indicate that it is still being used.

	Note:

	this is only really useful for locked elements but we allow it
for all.

	Raises:

	EnvironmentError - on any IOError, OSError in utime()

TODO: this may not work on OSes with directories implemented not as
files (eg. Windows). See doc for os.utime().

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dirq 1.3 documentation

Exceptions documentation

Exceptions used in the module.

Author

Konstantin Skaburskas <konstantin.skaburskas@gmail.com>

License and Copyright

ASL 2.0

Copyright (C) CERN 2011-2013

	
exception dirq.Exceptions.QueueError

	QueueError

	
exception dirq.Exceptions.QueueLockError

	QueueLockError

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	dirq 1.3 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dirq	

 	
 	
 dirq.Exceptions	

 	
 	
 dirq.queue	

 	
 	
 dirq.QueueBase	

 	
 	
 dirq.QueueNull	

 	
 	
 dirq.QueueSimple	

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 Navigation

 	
 index

 	
 modules |

 	dirq 1.3 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | L
 | N
 | P
 | Q
 | R
 | T
 | U

A

 	

 	add() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

 	(dirq.queue.QueueSet method)

 	add_path() (dirq.QueueNull.QueueNull method)

 	

 	(dirq.QueueSimple.QueueSimple method)

 	

 	add_ref() (dirq.QueueNull.QueueNull method)

 	

 	(dirq.QueueSimple.QueueSimple method)

C

 	

 	copy() (dirq.QueueBase.QueueBase method)

 	

 	count() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

 	(dirq.queue.QueueSet method)

D

 	

 	dequeue() (dirq.queue.Queue method)

 	dirq (module)

 	dirq.Exceptions (module)

 	dirq.queue (module)

 	

 	dirq.QueueBase (module)

 	dirq.QueueNull (module)

 	dirq.QueueSimple (module)

E

 	

 	enqueue() (dirq.queue.Queue method)

F

 	

 	first() (dirq.queue.QueueSet method)

 	

 	(dirq.QueueBase.QueueBase method)

G

 	

 	get() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

 	get_element() (dirq.queue.Queue method)

 	

 	get_path() (dirq.QueueNull.QueueNull method)

 	

 	(dirq.QueueSimple.QueueSimple method)

 	get_ref() (dirq.QueueNull.QueueNull method)

 	

 	(dirq.QueueSimple.QueueSimple method)

L

 	

 	lock() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

N

 	

 	names() (dirq.queue.QueueSet method)

 	

 	(dirq.QueueBase.QueueBase method)

 	

 	next() (dirq.queue.QueueSet method)

 	

 	(dirq.QueueBase.QueueBase method)

P

 	

 	purge() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

Q

 	

 	Queue (class in dirq.queue)

 	QueueBase (class in dirq.QueueBase)

 	QueueError, [1]

 	QueueLockError

 	

 	QueueNull (class in dirq.QueueNull)

 	QueueSet (class in dirq.queue)

 	QueueSimple (class in dirq.QueueSimple)

R

 	

 	remove() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

 	(dirq.queue.QueueSet method)

T

 	

 	touch() (dirq.QueueBase.QueueBase method)

U

 	

 	unlock() (dirq.queue.Queue method)

 	

 	(dirq.QueueNull.QueueNull method)

 	(dirq.QueueSimple.QueueSimple method)

 Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	rel-1.2.2

 	latest

 	v1.4

 	v1.3

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		dirq 1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright CERN 2011-2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		rel-1.2.2

 		latest

 		v1.4

 		v1.3

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

